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Phase Separation Driven by a Fluctuating
Two-Dimensional Self-Affine Potential Field
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We study phase separation in a system of hard-core particles driven by a fluc-
tuating two-dimensional self-affine potential landscape which evolves through
Kardar-Parisi-Zhang (KPZ) dynamics. We find that particles tend to cluster
together on a length scale which grows in time. The final phase-separated steady
state is characterized by an unusual cusp singularity in the scaled correlation
function and a broad distribution for the order parameter. Unlike the one-
dimensional case studied earlier, the cluster-size distribution is asymmetric
between particles and holes, reflecting the broken reflection symmetry of the
KPZ dynamics, and has a contribution from an infinite cluster in addition to
a power law part. A study of the surface in terms of coarse-grained depth
variables helps understand many of these features.
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1. INTRODUCTION

The behaviour of a scalar field driven by a fluctuating force field depends
strongly on the correlations of the driving field in space and time. A well
known example is the passive scalar problem in fluid mechanics, where one
asks for the behavior of a passive field as it is advected by a turbulent fluid
flow.® Even in situations where the driving force field has simpler correla-
tions, the passive scalar field can show interesting, and sometimes unex-
pected, behaviour. In particular, while in the fluid context an initial local
concentration of passive particles typically spreads out in space, in other
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types of situations an initially randomly distributed set of particles may be
driven into a state with large-scale clustering. In this paper, we study one
such example.

We consider a force field which is derived from a fluctuating potential,
and ask for its effect on a system of particles which do not interact with
each other except through hard-core exclusion. The problem is then tan-
tamount to the dynamics of hard-core particles which reside on a fluctuat-
ing surface and are driven downwards by gravity along local slopes. An
especially interesting case arises when the surface is self-affine with a power-
law divergence in the height correlation function as a function of the sepa-
ration. In such cases, surface roughening strongly affects the clustering of
particles and can lead to new types of states.*> We study a stochastically
evolving two-dimensional surface governed by Kardar-Parisi-Zhang
(KPZ) dynamics® and show that surface fluctuations bring about large-
scale clustering of particles, akin to phase separation. The particles are
taken to be random walkers with an excluded volume constraint, diffusing
in the dynamic potential landscape defined by the local height A(r, ) at a
base position r = (r,, r,) at time z. In addition, the particles are assumed to
be sufficiently massive that the dynamics operates effectively at zero tem-
perature; this means that particles only move locally downwards at a fixed
rate, subject to the conditions that the local slope is favourable and the
target site is unoccupied. This model is a generalization to two dimensions
of the 1-d model studied in ref. 3 where it was found that the particles
reach a phase separated state with unusual properties arising from strong
surface fluctuations. Since the nature and strength of fluctuations depends
strongly on the dimensionality, it is important to see to what extent these
features survive in higher dimensions. This is one of the principal aims of
this paper.

Let us summarize the main results. Our numerical simulations support
the argument that the particle density exhibits phase ordering over a char-
acteristic time-dependent coarsening length scale #(¢) ~ t'/7 set by surface
fluctuations.® Here z is the dynamical exponent for surface fluctuations;
for the KPZ surface with d =2, it is known that z ~ 1.6.®) The pair-corre-
lation function is found to depend on the separation scaled by £(¢), as is
characteristic of a system undergoing phase ordering, but the scaling func-
tion has a cusp near the origin, unlike usual phase separating systems.®
The cluster size distribution in the steady state has a power law decay
N(s) ~s~° for s << L?, where the exponent 7 is different for particles and
holes. In addition, unlike the 1-d case, there is a distinct contribution to
N(s) from an “infinite” cluster which contains a finite fraction of the total
number of particles. An understanding of these results can be gained from
a study of the surface itself. To this end, it proves useful to distinguish
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between regions where the height is less than or more than a fixed reference
level. This is incorporated in a Coarse-grained Depth (CD) model of the
surface,®” which itself exhibits phase separation. Many of its properties
reflect the underlying asymmetry of the KPZ surface. Finally, in both the
sliding particle and depth models, the order parameter has a distribution
that remains broad in the thermodynamic limit.

We introduce the model in Section 2. In Section 3, we present results
for two-point correlation functions, cluster-size distributions and the order-
parameter distribution, while Section 4 is the conclusion.

2. MODEL

We study an autonomously evolving two-dimensional surface, whose
behaviour over large length and time scales is described by the Kardar—
Parisi-Zhang equation®

Oh
P vW2h+ A(Vh)>+5(r, 1) 1)

with short range correlations for the noise, <#(r, ) #(r’, t')» oc 6%(r—r") 5(z —1t').
The KPZ surface in d =2 is known to be self-affine in steady state:
{(h(0)—h(r))*> ~r** where y is the roughness exponent. For the KPZ
problem with d =2, y ~0.4.%® The nonlinear term in Eq. (1) breaks
h — —h symmetry, and this has important consequences for the models we
study.

We simulate the surface through a discrete solid-on-solid (SOS) algo-
rithm,® where the height difference between nearest neighbour (NN)
points on a square lattice is maintained at +1. A point is selected at
random and its height is increased by 2 units with probability p, if all four
of its NN points are at greater height, and decreased with probability p_
if all four are at a lower height. Otherwise, the site is not updated. It is
believed that the asymptotic properties of this single step model are the
same as those of the (2+ 1)-dimensional KPZ equation, though this has not
been proved. In our simulations we chose p, =0 and p_ =1, so that we
have an “evaporating,” rather than a growing surface whose average height
decreases in time.

The Sliding Particle (SP) model is defined as follows. Particles are ini-
tially distributed at random on surface sites with no more than one particle
per site, the overall particle density being p. The external force field which
drives the particles acts downwards, so that particles tend to move in the
same direction as the average surface height, while holes tend to move
upwards, opposite to the direction of surface motion. In a microstep,
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a randomly chosen particle attempts a move to a randomly chosen neigh-
bouring site. If the local slope is favourable and the target site is unoc-
cupied, the move is made, otherwise the particle stays at the same site. One
MC step is counted when, on average, all surface sites and all particles have
been updated in a random sequence. We verified that a faster rate of
updating for particles with respect to surface updates does not change the
qualitative results. We did our simulations on square lattices with p =1 and
sizes ranging from L =32 to L =256. We used periodic boundary condi-
tions for both the surface and the particles which reside on it.

It is helpful to introduce two sets of discrete Ising-like spin variables
to characterise the particle and surface configurations. For the particle
configuration, we define a(r) = 2n(r) — 1 where n(r) is the local occupation
index, i.e., n(r) = 1 if there is a particle at r and zero otherwise. Further, to
characterise the height fluctuations of the surface configuration, we define
a Coarse-grained Depth model in which we categorize sites according to
whether they are above or below a certain fixed height. To this end, we
define s(r) = —sgn(h(r)—h,) where A, is a chosen reference level. We call
the set {a(r)} as SP spins and the set {s(r)} as CD spins. In order to have
a rough correspondence with the half-filled case p =} of the SP model, we
take &, to be a spatial average over the configuration of surface heights at
that instant.

We expect a correlation between SP and CD spins as local slopes in
the surface guide the particles towards the local minima, so that over suffi-
ciently large time scales, particles are expected to preferentially cluster in
low-depth regions with predominantly positive CD spins. If particles were
to occupy the lowest available positions so as to minimise the total poten-
tial energy, we would have a close match of the a(r) and s(r). However,
this “ground state” is never reached as the surface reconfigures itself before
particle rearrangements can occur.

3. RESULTS

3.1. Correlation Functions

The SP-CD correspondence gives an insight into the extent of cluster-
ing of the particles. For example, a hill (a region with negative s(r)) of
linear extension ¢ is expected to overturn in typical time 7 ~ &7, causing
clustering of particles as they fall into the valleys that form. Since the
largest hill that overturns within time ¢ has typical size Z(¢) ~ ¢'/%, this
defines the characteristic length scale for particle clustering.®) This is
verified in a numerical study of the pair spin correlation function
C(r, t) =<0(0, t) a(r, ¢)) in the SP model. As we see in Fig. 1, this function
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Fig. 1. Equal-time two-point spin correlation for particles sliding down a 2-d KPZ surface
of linear size 256. There is a scaling collapse when plotted as a function of the scaled variable
r/t* with ¢ = 0.6, indicating coarsening. Each point represents an average over 100 different
time histories.

can be fitted into a scaling form C(r, ) = f(r/£(t)) with £(t) ~ t'/ and
z = 1.6, which is close to the value of the dynamical exponent for the (2+1)
dimensional KPZ surface.® This dynamic scaling form is characteristic of
a phase ordering system. However, the scaling function has a cusp singu-
larity at small argument, unlike usual coarsening systems where the func-
tion is linear for small arguments.®

In steady state, the system size L replaces £(t) as the relevant length
scale, and a similar scaling form is expected for the correlation function. To
quantify the deviation from linearity at small arguments, we studied the
structure factor in the steady state,

S(k, L) = f d’r C(r, L) e, Q)

As shown in Fig. 2, the direction-averaged structure factor is well
described by the form S(k, L)=1—c,+L’g(kL), where c,~0.4 and
g(q) ~ g=@** at large g. The first term arises from a short-distance analytic
contribution (1—c¢,) d(r) which adds on to the scaling part f(r/L) of
C(r, L). We find o~ 0.38(4), a pronounced difference from typical coar-
sening systems where « = 1 (Porod Law)."” The non-Porod form implies a
cusp in the real space scaling function at small argument,

f(xX)~cp—c x*+ -+ x<x1 3
with x=r/L.
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Fig. 2. Steady state pair correlation in the SP model for various system sizes L. The finite
size scaling form C(r, L) = f(r/L) illustrated by the data collapse is is characteristic of phase
separation. Inset: The scaled structure factor g(g) plotted against the scaled wave vector
q = kL with L = 128 shows that g(q) ~ ¢g~®** with « ~ 0.38(4), implying a cusp singularity in
the real space correlation function.

We have also studied the two-point correlation function in the CD
model, and find a similar behaviour, with a cusp exponent a ~ 0.43(3). In
the next subsection we will show that within the independent interval
approximation, the cusp exponent a of the CD model is equal to the
roughness exponent y.

3.2. Cluster Size Distributions

Let us define a cluster as a set of like SP spins (particles or holes), each
of which is a nearest neighbor of at least one other like spin in that cluster.
A study of the size distribution of clusters shows (Fig. 3) that the number
of connected clusters NV, (s) with s particles (holes) has a power-law decay
for s < L*

N,(s) ~ L*s7"%; s<<L? (€]

where 7, ~ 2.2 and 7_ ~2.0. This power-law distribution of cluster sizes,
reminiscent of critical systems, is another characteristic feature of the
unusual phase separated state under study — it occurs in one dimension as
well.® There are, however, two important differences from the 1-d case.
First, there is a marked difference in the powers 7, and 7_ for particle
(6; = +1) and hole (g, = —1) clusters, which reflects the asymmetry of the
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Fig. 3. Size distribution of cluster sizes for + spins (particles) and — spins (holes) for the SP
model. The data shows a power-law decay with exponent ~ 2.2 and a well-separated “infi-
nite” cluster for particles, and a lower value of the exponent ~ 2.0 for holes. We used L = 128
and averaged over 100 histories.

s; =+1 and s; = —1 clusters in the CD model as discussed below. Second,
for the particle cluster distribution we find that there is an additional large
s contribution of the form f, (s/L*—y,) peaked at y,~0.4. For finite
system sizes, f,, is somewhat broad, but with increasing L, the width of the
peak narrows down. We find that the area under the peak is unity, imply-
ing that there is a single very large cluster in every configuration. Also, the
fraction of particles contained in this cluster is 2y, ~ 0.8.

The power-law distribution of cluster sizes in the SP model has its
counterpart in the CD model too. It is known that when a rough surface
is intersected by a horizontal plane, the distribution of areas enclosed by
the closed contours of intersection has the power-law form .A4(s) ~ s~ for
s << L? where t*=2-2.0"19 A typical contour encloses several other
contours, and the overall structure is scale invariant.”” For the KPZ
surface one should moreover distinguish between contours whose inner
perimeter sites lie above or below the cut, as there is no a priori reason for
both the distributions to be identical. In fact, numerical simulations show
that cluster size distributions for CD spins (which are closely related to
area distributions), indeed has an asymmetry between positive and negative
spins (Fig. 4). Both the distributions follow power-law decays, but with
different exponents. The exponent for negative CD spins is numerically
close to ¥, while that for positive spins is significantly larger. Morover,
there is a contribution from an infinite cluster of positive spins, as for the
particle distribution in the SP problem.
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Fig. 4. Domain size distribution for + (valley) and — (hill) spins for the CD model. The
exponents for the power-law parts have values ~ 2.2 and 1.85 respectively. There is a distinct
contribution to the distribution of + spins from an infinite cluster. We used L =128 and
averaged over 100 histories.

Within the CD model, we argue that power laws in cluster distribu-
tions of a different sort are related to the occurrence of a cusp in the scaled
correlation function. For a self-affine surface with roughness exponent y, it
is known that the probability P(/) that the surface first returns to its start-
ing height A(x = 0) = h, after moving a distance / along an arbitrary linear
direction has a power-law decay at small [: P(I) ~17@=? for | << L.-!:19
Each such segment defines a linear cluster of CD spins s; of the same sign,
along the linear cut. Now let us make the independent interval approxima-
tion (ITA) in which the lengths of such segments are taken to be indepen-
dent random variables. This enables the Laplace transforms of the cluster
size distribution and pair correlation function for CD spins (defined rela-
tive to h,y) to be related along any linear cut. The nonstandard feature is
that the mean cluster size diverges as L — oo, but the correlation function
can be calculated as in ref. 3. It has the scaling form

C*r.L)~1-a <%>x+ i r< L (IIA) 5)

Comparing with Eq. (3), we see that the ITA predicts that the cusp expo-
nent « in the CD model is equal to the roughness exponent y. The KPZ
value y is quite close to the measured value of a for the CD model, and
also to that for the SP model. The behaviours of both models on large
scales of distance and time appear to be similar in 2-d, even though the
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microscopic configurations of the two match only roughly. To get an idea
of the latter, we monitored the overlap index O = {a(r) s(r)), and found
that O varies between ~ 0.38 when the frequency of updates of particles
and surface is equal, and a saturation value ~ 0.6 as the ratio between the
two is increased. However, there was no corresponding significant change
in the numerical values of the exponents o and 7.

3.3. Order Parameter

For a system with conserved magnetisation like the SP model, an
appropriate quantity to characterise the ordered state is the steady state
average of the magnitude of the Fourier components of the density,®
defined as Q(k) =<| L™>Y, n(r) e ™" |» where k=%(n,,n,) and k| <.
Taking the magnitude guarantees that Q(k) receives the same contribution
from all configurations that can be obtained from each other by transla-
tional shifts."® In Fig. 5, we plot Q(k) along the (1, 0) direction for four
different lattice sizes. The sequence of curves suggests that for any fixed,
finite k, Q(k =2nn/L, 0) approaches zero as L increases. However, if n is
held fixed so that |k| approaches zero as L — oo, the corresponding Q
approaches a finite limit. Of this set of Q’s, the largest is 0* = Q(%, 0), and
provides the simplest characterization of the order.

Fluctuations in the SP model are unusually strong and are reflected
in the probability distribution of Q* (Fig. 6). The distribution seems to
remain broad and approach a limit as L increases, with (Q*> ~ 0.07 and
variance ~ 0.02. Similar studies of the corresponding CD model shows that
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Fig. 5. Q(k, 0) plotted against wave vector k = 2zn/L and (Inset) n for four lattice sizes.
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Fig. 6. Probability distribution of the order parameter Q* for three lattice sizes for the SP
problem.

there is a broad distribution there as well, and we find {Q*)> ~0.11. The
fact that the RMS fluctuation of the order parameter does not vanish in
the large-size limit is an unusual and characteristic feature of the ordered
state of this model. Note that fluctuations which drive Q* towards zero
need not take the system into a disordered state. A study of the temporal
fluctuations of Q* in one dimension showed that a low value of Q* occurs
simultaneosly with an increase of the value of Q for another close-by n, so
that the state retains macroscopic order, but with a few more coexisting
macroscopic domains.® A more complete characterization of the order
in two dimensions would thus involve finding the joint probability
g’[Q(zT, Z'Z’y )] as L — oo, but this has not been attempted here.

It is interesting to compare the distribution P(Q*) for this model with
the corresponding quantity for a more familiar system such as the 2-d Ising
model evolving under conserved (Kawasaki) dynamics. For the ferromag-
netic Ising model with equal numbers of up and down spins, the ordered
state in a finite system consists of strips of width ~ 1L parallel to either x
or y axes, with equal probability. Thus the distribution P(Q*) (say, with
0*= Q(%,0)) in that case would have two peaks, one at a non-zero value
of Q* corresponding to strips forming along the x-direction, and another
peak at Q* =0 which corresponds to strips forming in the y-direction. In
our case, however, the peak at the origin is absent as the interface between
phases is much more diffuse and there is no strip formation. In this sense,
the ordering observed in this model is very different from that in traditional
equilibrium models.
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4. CONCLUSION

To conclude, we have studied a model where a fluctuating self-affine
surface drives a set of downward-drifting particles to a phase separated
state. The phase separation has several unusual characteristics arising from
the presence of strong fluctuations which survive even in the thermody-
namic limit. These include a power-law distribution of cluster sizes, a cusp
in the scaled pair correlation function and a finite width of the order
parameter distribution. These features mirror the properties of a coarse-
grained height model of surface fluctuations, where they follow directly
from the self-affine nature of surface fluctuations. In particular, the
asymmetry in the cluster size distribution for particles and holes is a con-
sequence of the fact that KPZ growth breaks up-down symmetry. It would
be interesting to see if a similar asymmetry exists in other related quantities
such as the distribution of lengths of contours and the areas enclosed by
them.

It would also be interesting to study the sliding particle problem on
a fluctuating Edwards—Wilkinson surface, where particle-hole symmetry
should be restored in the half-filled case. This surface is logarithmically
rough in 2-d, suggesting that the scaled two-point correlation functions for
the sliding particle and depth problems should show an even sharper cusp
than for the KPZ surface studied in this paper.

Finally, we remark that it would be interesting to explore the effects of
removing the hard core interaction between particles. A study of nonin-
teracting particles sliding on a KPZ surface in one dimension indicates a
power law decay of the two-point correlation function.”® A study of other
characteristics of the resulting state should prove quite revealing.
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